Nitrous acid

Nitrous acid (molecular formula \underline{HNO}_2) is a weak and $\underline{monobasic\ acid}$ known only in $\underline{solution}$, in the gas phase and in the form of $\underline{nitrite}\ (NO_2^-)$ salts.^[1] Nitrous acid is used to make $\underline{diazonium\ salts}$ from amines. The resulting diazonium salts are reagents in $\underline{azo\ coupling}$ reactions to give $\underline{azo\ dyes}$.

Nitrous acid

Names

Preferred IUPAC name Nitrous acid

Systematic IUPAC name

Hydroxidooxidonitrogen

Appearance	Pale blue solution
<u>Density</u>	Approx. 1 g/ml
<u>Melting point</u>	Only known in solution or as gas
<u>Acidity</u> (pK _a)	3.398
Conjugate base	<u>Nitrite</u>
Hazards	
NFPA 704 (fire diamond)	4 0 2
Flash point	Non-flammable

Structure

In the gas phase, the planar nitrous acid molecule can adopt both a *cis* and a *trans* form. The *trans* form predominates at room temperature, and <u>IR measurements</u> indicate it is <u>more stable</u> by around 2.3 kJ/mol.^[1]

Dimensions of the *trans* form (from the <u>microwave spectrum</u>)

Model of the trans form

cis form

Preparation

Nitrous acid is usually generated by acidification of aqueous solutions of sodium nitrite with a mineral acid. The acidification is usually conducted at ice temperatures, and the HNO₂ is consumed

in situ.^{[2][3]} Free nitrous acid is unstable and decomposes rapidly.

Nitrous acid can also be produced by dissolving <u>dinitrogen trioxide</u> in water according to the equation

$$N_2O_3 + H_2O \rightarrow 2 HNO_2$$

Reactions

Decomposition

Gaseous nitrous acid, which is rarely encountered, decomposes into <u>nitrogen</u> <u>dioxide</u>, <u>nitric oxide</u>, and water:

$$2 \text{ HNO}_2 \rightarrow \text{NO}_2 + \text{NO} + \text{H}_2\text{O}$$

Nitrogen dioxide disproportionates into <u>nitric acid</u> and nitrous acid in aqueous solution: [4]

$$2 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{HNO}_2$$

In warm or concentrated solutions, the overall reaction amounts to production of nitric acid, water, and nitric oxide:

$$3 \text{ HNO}_2 \rightarrow \text{HNO}_3 + 2 \text{ NO} + \text{H}_2\text{O}$$

The nitric trioxide can subsequently be reoxidized by air to nitric acid, making the overall reaction:

$$2 \text{ HNO}_2 + \text{O}_2 \rightarrow 2 \text{ HNO}_3$$

Reduction

With I⁻ and Fe²⁺ ions, NO is formed:^[5]

$$2 \text{ KNO}_2 + 2 \text{ KI} + 2 \text{ H}_2\text{SO}_4 \rightarrow \text{I}_2 + 2 \text{ NO} + 2 \text{H}_2\text{O} + 2 \text{ K}_2\text{SO}_4$$
 $2 \text{ KNO}_2 + 2 \text{ FeSO}_4 + 2 \text{ H}_2\text{SO}_4 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + 2 \text{ NO} + 2 \text{ H}_2\text{O} + \text{K}_2\text{SO}_4$

With Sn^{2+} ions, N_2O is formed:

$$2 \text{ KNO}_2 + 6 \text{ HCl} + 2 \text{ SnCl}_2 \rightarrow 2 \text{ SnCl}_4 + N_2O + 3 H_2O + 2 \text{ KCl}$$

With SO₂ gas, NH₂OH is formed:

$$2 \text{ KNO}_2 + 6 \text{ H}_2\text{O} + 4 \text{ SO}_2 \rightarrow 3 \text{ H}_2\text{SO}_4 + \text{K}_2\text{SO}_4 + 2 \text{ NH}_2\text{OH}$$

With Zn in alkali solution, NH₃ is formed:

$$5 H_2O + KNO_2 + 3 Zn \rightarrow NH_3 + KOH + 3 Zn(OH)_2$$

With $N_2H_5^+$, HN_3 , and subsequently, N_2 gas is formed:

$$HNO_2 + [N_2H_5]^+ \rightarrow HN_3 + H_2O + H_3O^+$$

 $HNO_2 + HN_3 \rightarrow N_2O + N_2 + H_2O$

Oxidation by nitrous acid has a <u>kinetic</u> <u>control</u> over <u>thermodynamic control</u>, this is best illustrated that dilute nitrous acid is able to oxidize I⁻ to I₂, but dilute nitric acid cannot.

$$I_2 + 2 e^- \rightleftharpoons 2 I^- \qquad E^0 = +0.54 \text{ V}$$
 $NO_3^- + 3 H^+ + 2 e^- \rightleftharpoons HNO_2 + H_2O$
 $E^0 = +0.93 \text{ V}$
 $HNO_2 + H^+ + e^- \rightleftharpoons NO + H_2O \qquad E^0$
 $= +0.98 \text{ V}$

It can be seen that the values of $E_{\text{cell}}^{\text{o}}$ for these reactions are similar, but nitric acid is a more powerful oxidizing agent. Base on the fact that dilute nitrous acid can oxidize iodide into <u>iodine</u>, it can be deduced that nitrous is a faster, rather

than a more powerful, oxidizing agent than dilute nitric acid.^[5]

Organic chemistry

Nitrous acid is used to prepare <u>diazonium</u> <u>salts</u>:

 $HNO_2 + ArNH_2 + H^+ \rightarrow ArN_2^+ + 2 H_2O$ where Ar is an <u>aryl</u> group.

Such salts are widely used in <u>organic</u> <u>synthesis</u>, e.g., for the <u>Sandmeyer reaction</u> and in the preparation <u>azo dyes</u>, brightly colored compounds that are the basis of a

qualitative test for <u>anilines</u>. [6] Nitrous acid is used to destroy toxic and potentially explosive <u>sodium azide</u>. For most purposes, nitrous acid is usually formed *in situ* by the action of mineral acid on <u>sodium nitrite</u>: [7] It is mainly blue in colour

$$NaNO_2 + HCI \rightarrow HNO_2 + NaCI$$

 $2 NaN_3 + 2 HNO_2 \rightarrow 3 N_2 + 2 NO + 2$
 $NaOH$

Reaction with two <u>α-hydrogen</u> atoms in <u>ketones</u> creates <u>oximes</u>, which may be further oxidized to a carboxylic acid, or reduced to form amines. This process is

used in the commercial production of adipic acid.

Nitrous acid reacts rapidly with <u>aliphatic</u> <u>alcohols</u> to produce <u>alkyl nitrites</u>, which are potent <u>vasodilators</u>:

$$(CH_3)_2CHCH_2CH_2OH + HNO_2 \rightarrow$$

 $(CH_3)_2CHCH_2CH_2ONO + H_2O$

The carcinogens called <u>nitrosamines</u> are produced, usually not intentionally, by the reaction of nitrous acid with <u>secondary</u> <u>amines</u>:

$$HNO_2 + R_2NH \rightarrow R_2N-NO + H_2O$$

OXOACIDS OF NITROGEN

Nitrous acid HNO₂

1

Nitrous acid is unstable except in dilute solution. It is easily made by acidifying a solution of a nitrite. Barium nitrite is often used with H₂SO₄, since the insoluble BaSO₄ can be filtered off easily.

used to defect & quantitatively. The NO, and disk

and boad to the same metal twice to had been

$$Ba(NO_2)_2 + H_2SO_4 \rightarrow 2HNO_2 + BaSO_4$$

Group 1 metal nitrites can be made by heating nitrates, either on their own or with Pb.

$$2NaNO_3 \xrightarrow{heat} 2NaNO_2 + O_2$$

$$NaNO_3 + Pb \xrightarrow{heat} NaNO_2 + PbO$$

Nitrous acid and nitrites are weak oxidizing agents and will oxidize Fe^{2+} to Fe^{3+} , and I^- to I_2 : they themselves are reduced to N_2O or NO. However, HNO_2 and nitrites are oxidized by $KMnO_4$ and Cl_2 , forming nitrates NO_3^- .

Large amounts of nitrites are used to make diazo compounds, which are converted into azo dyes, and also pharmaceutical products.

Nitrites are important in the manufacture of hydroxylamine:

THE GROUP 15 ELEMENTS

 $NH_4NO_2 + NH_4HSO_3 + SO_2 + 2H_2O \rightarrow [NH_3OH]^+HSO_4^- + (NH_4)_2SO_4$

Sodium nitrite is used as a food additive in cured meat, sausages, hot dogs, bacon and tinned ham. Though an approved additive, its use is controversial. NaNO₂ is slightly poisonous. The tolerance limit for humans is $5-10\,\mathrm{g}$ per day depending on body weight. NO₂ ions inhibit the growth of bacteria, particularly Clostridium botulinum, which causes botulism (a particularly unpleasant form of food poisoning). Reductive decomposition of NO₂ gives NO, which forms a red complex with haemoglobin, and improves the look of meat. There is concern that during the cooking of meat, the nitrites may react with amines and be converted into nitrosamines $R_2N-N=O$, which are thought to cause cancer. Certainly secondary and tertiary aliphatic amines form nitrosamines with nitrites:

$$\sqrt{\text{Et}_2\text{NH} + \text{HNO}_2} \rightarrow \text{Et}_2\text{NNO} + \text{H}_2\text{O}$$

$$\sqrt{\text{Et}_3\text{N} + \text{HNO}_2} \rightarrow [\text{Et}_3\text{NH}][\text{NO}_2] \xrightarrow{\text{heat}} \text{Et}_2\text{NNO} + \text{EtOH}$$

The nitrite ion is a good ligand and forms many coordination complexes. Since lone pairs of electrons are present on both N and O atoms, either N or O can form a coordinate bond. This gives rise to isomerism between nitro complexes $M \leftarrow NO_2$ and nitrito complexes $M \leftarrow ONO$, for example $[Co(NH_5)_5(NO_2)]^{2+}$ and $[Co(NH_3)_5(ONO)]^{2+}$. This is discussed in Chapter 7, under 'Isomerism'. If a solution of Co^{2+} ions is treated with NO_2^- ions, first Co^{2+} ions are oxidized to Co^{3+} , then NO_2^- ions form the complex $[Co(NO_2)_6]^{3-}$. Precipitation of potassium cobaltinitrite $K_3[Co(NO_2)_6]$ is used to detect K^+ qualitatively. The NO_2^- ion may act as a chelating ligand, and bond to the same metal twice, or it may act as a bridging ligand joining two metal atoms.

The nitrite ion NO_2^- has a plane triangular structure, with N at the centre, two corners occupied by O atoms, and the third corner occupied by the lone pair. A three-centre bond covers the N and the two O atoms and the bond order is 1.5 for the N—O bonds, which have bond lengths in between those for a single and double bond. (More details are given in Chapter 4, under 'Examples of molecular orbital treatment involving delocalised π bonding'.)